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1. Introduction

Black hole microstate counting has been a problem of constant interest in string theory [1 –

9] for the past decade. This problem has been the subject of intense recent activity [10 – 27]

motivated by the connection with topological strings proposed in [28] and by the corre-

spondence between 4D black holes and 5D black holes [29] and black rings [30 – 33].

In N = 2 string theory compactifications, supersymmetric black holes can be described

in terms of D-branes wrapping supersymmetric cycles in the internal manifold. The black

hole entropy is determined by the degeneracy of D-brane bound states with fixed topolog-

ical charges. In the semiclassical approximation, D-brane bound states are associated to

cohomology classes on the moduli space of classical supersymmetric configurations. The

macroscopic entropy formula is typically captured by the asymptotic growth of BPS de-

generacies in the limit of large charges. This has been shown in [5, 6, 19] for D4-D2-D0

configurations on Calabi-Yau threefolds. Analogous results for D-brane configurations with

nonzero D6-brane charge seem to be more elusive.

In this paper we address the problem of counting the microstate degeneracy for D-brane

configurations with nonzero D6-brane charge on elliptically fibered Calabi-Yau threefolds.

A string duality chain described in section two shows that this system admits several

different descriptions in terms of wrapped branes in F-theory, M-theory or IIA compacti-

fications. In particular this duality chain predicts an equivalence of the D6-D2-D0 system

with a D4-D2-D0 configuration on the same Calabi-Yau threefold, which can be recognized

as a Fourier-Mukai transform along the elliptic fibers. This is discussed in detail in section

three. Another incarnation of the D6-D2-D0 configuration which will play an important
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role in this paper is a noncritical six-dimensional string obtained by wrapping D3-branes

on holomorphic curves in F-theory compactifications.

D-brane systems with D4-D2-D0 charges have a known microscopic CFT descrip-

tion [5, 6, 19] which allows one to compute the asymptotic degeneracy of states in the

limit of large D0 charge. Our goal is to compare the resulting entropy formula with a

macroscopic computation performed in a low energy supergravity description. We will

show in section four that a reliable macroscopic description in the limit of large D0 charge

must be formulated in terms of black-string solutions of N = 1 six dimensional supergrav-

ity. The resulting macroscopic entropy formula reproduces the macroscopic result including

certain subleading corrections.

The problem of microstate degeneracies for D6-D4-D2-D0 black holes is also addressed

in the upcoming work [34] using split attractor flows. Although this seems to be a different

approach than the Fourier-Mukai transform employed here, it would be interesting to

understand the relation between these two methods.
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2. Strings, D-branes and Fourier-Mukai transform

In this section we explain the connection between Fourier-Mukai transform, D-branes and

noncritical strings in F-theory.

We will be interested in D6-D2-D0 configurations in IIA compactifications on an elliptic

fibration X. Such configurations can be mapped to D4-D2-D0 configurations by a T-duality

transformation on the elliptic fiber. From a mathematical point of view this a Fourier-

Mukai transform mapping D-branes on X to D-branes on the dual Calabi-Yau threefold

X∨. Note that X and X∨ are canonically isomorphic if X is a smooth elliptic fibration

with a section, which will be assumed from this point on. Therefore we will not make a

distinction between X and X∨ in the following.

The presence of degenerate elliptic fiber makes the T-duality transformation rather

subtle since strictly speaking elliptic Calabi-Yau threefolds with SU(3) holonomy do not

admit isometries. For this reason it may be useful to note that this transformation can be

physically understood as a sequence of string duality transformations relating noncritical

strings in six dimensional F-theory compactifications to IIA D-brane configurations. This

observation will also be helpful in identifying the correct macroscopic description of the

system.
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2.1 A duality chain

The basic observation due to [6] is that D3-branes wrapping a curve C ⊂ B in the base

of an F-theory compactification are related by string duality to either M2 or M5 brane

configurations. This can be seen by mapping compactifying F-theory on an elliptic Calabi-

Yau manifold X times a circle S1 of radius R. A D3-brane wrapping C × S1 equivalent to

an M2-brane wrapping the curve C while a D3-brane wrapping the curve C but not S1 is

mapped to an M5-brane supported on the vertical divisor D = π−1(C) in X. Note that in

both cases, we can obtain a IIA description of the system by further compactifying on an

extra circle.

Motivated by the 4D/5D black hole correspondence, we will consider an F-theory

background of the form X × TNr × S1 × R where TNr is a Taub-NUT space of type

Ar−1, and R is the time direction. This theory contains six-dimensional noncritical strings

obtained as above by wrapping a D3-brane on C×S1, where C is a curve in B. We perform

again the duality transformations described in the above paragraph taking into account

the presence of the Taub-NUT space. Namely we can reduce this system to an M-theory

compactification by making either the circle S1 or the circle fiber of the Taub-NUT space

very small. In the first case the D3-brane will be mapped to a M2-configuration in M-

theory on X × TNr, while in the second case we will obtain an M5-brane configuration

on X × S1 × R
4. The second transformation involves the known NS five-brane Taub-NUT

duality [43 – 45]. Finally, in both cases we can compactify the theory to a IIA model,

obtaining different D-brane configurations. Namely the first sequence of transformations

yields a D4-D2-D0 configuration while the second results in a D6-D2-D0 configuration.

These configurations turn out to be related by a Fourier-Mukai transform. This paragraph

can be summarized in the following diagram

F-theory on X × TNr × S1

²²

// M-theory on X × TNr × R // IIA on X × R
4

FM transform

tthh
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

M-theory on X × S1 × R
4

²²

IIA on X × R
4

Next we compute the effect of the Fourier-Mukai transform on D-brane charges, and show

that it is in agreement with the above duality transformations up to curvature corrections

which cannot be computed from physical considerations.

2.2 D-branes and Fourier-Mukai transform

Our set-up is a IIA compactification on a smooth elliptically fibered Calabi-Yau threefold

X. In order to set the ground for our discussion, we will start with a short review of special

Kähler geometry, BPS states and D-branes. Throughout this paper we will identify the

complexified Kähler moduli space of X with the complex structure moduli space of the

mirror threefold Y . Let

Π =
[
F0,FA,XA,X0

]tr
(2.1)
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denote the periods of the holomorphic three-form on Y , where A = 1, . . . , h1,1(X). The

inhomogeneous flat coordinates on the moduli space are

tA =
XA

X0
, A = 1, . . . , h1,1(X). (2.2)

The large radius limit point in the Kähler moduli space of X is identified with a large com-

plex structure (LCS) limit of Y . The periods are normalized so that X0 is the fundamental

period and XA, are the logarithmic periods at the LCS point.

The central charge of a BPS state with charges (PΛ, QΛ), Λ = 0, . . . , h1,1(X), is given

by

Z = eK/2(QΛXΛ − PΛFΛ) (2.3)

where

K = −ln i(X
ΛFΛ − XΛFΛ) (2.4)

is the Kähler potential.

From a microscopic point of view, BPS states are bound states of D6-D4-D2-D0 brane

configurations on X. Such configurations are described by holomorphic vector bundles, or,

more generally, coherent on sheaves on X. Given such an object E , the central charge of

the corresponding BPS state has an expansion of the form

Z = eK/2X0

(∫

X
eJ(tA)ch(E)

√
Td(X) + · · ·

)
(2.5)

near the large radius point, where J(tA) denotes the complexified Kähler form on X,

and . . . stand for world-sheet one-loop and instanton corrections. Following the standard

conventions in the literature we will use the notation

Z(E) =

∫

X
eJ(tA)ch(E)

√
Td(X). (2.6)

More generally, if α is a cohomology class on X, we will denote by

Z(α) =

∫

X
eJ(tA)α

√
Td(X) (2.7)

Mirror symmetry implies that the logarithmic periods XA have an expansion of the

form

XA = X0(Z(βA) + · · · ) (2.8)

near the large radius limit, where βA ∈ H2,2(X) are Poincaré dual to some curve classes

CA on X. The remaining periods have similar expansions

FA = X0(Z(αA) + . . .)

F0 = X0(Z(OX) + . . .)
(2.9)

where αA ∈ H1,1(X) is a basis of H1,1(X), and {βA} is a basis of H2,2(X) so that
∫

X
αA ∧ βB = δB

A . (2.10)

– 4 –
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We can make a more specific choice of even cohomology generators taking into account

the elliptic fibration structure of X. We will restrict ourselves to smooth elliptic fibrations

π : X → B which can be written in Weierstrass form. The base B is a smooth del Pezzo

surface. Then h1,1(X) = h1,1(B) + 1 and we can choose the basis {αA} ⊂ H1,1(X) so that

αi = π∗γi, i = 1, . . . h1,1(B). (2.11)

Moreover, the last basis element αh, where h = h1,1(X), is normalized so that

∫

F
αh = 1,

∫

C
αh = 0,

where F denotes the class of the elliptic fiber, and C is an arbitrary horizontal curve class1

on X. Denoting by σ the (1, 1) class related by Poincaré duality to the section class, we

have

αh = σ + π∗c1(B). (2.12)

Let {ηi}, i = 1, . . . , h1,1(B) denote the dual basis of H1,1(B), i.e.

∫

B
γi ∧ ηj = δj

i . (2.13)

Then we can choose the basis {βA} ⊂ H2,2(X) so that

βi = σ ∧ π∗ηi, i = 1, . . . , h1,1(B) (2.14)

and βh is Poincaré dual to the fiber class F .

The D6-D2-D0 configurations related by duality to F-theory noncritical strings are

described by holomorphic bundles E on X with Chern character

ch(E) = r −
h1,1(B)∑

i=1

qiβ
i − nβh − mω ∈ H0(X) ⊕ H2,2(X) ⊕ H3,3(X) (2.15)

where ω ∈ H3,3(X) is the fundamental class of X normalized so that

∫

X
ω = 1.

A straightforward computation shows that

Z(E) = rZ(OX) − qiZ(βi) − nZ(βh) − m (2.16)

This expression determines the charge vector of the corresponding BPS state

(P 0, PA, QA, Q0) = (r, 0,−qi,−n,−m). (2.17)

1A curve class will be called horizontal if it lies in the image of the pushforward map ι∗ : H2(B) → H2(X),

where ι : B → X is the canonical section of the Weierstrass model.
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In the duality chain described in section (2.1), r can be easily identified with the charge

of the Taub-NUT space, C = qiη
i is the support C ⊂ B of the wrapped D3-brane, and

m = 2J is twice the angular momentum of the resulting F-theory spinning string.

The microscopic entropy of such a D-brane system is determined by counting coho-

mology classes on the moduli space of classical supersymmetric configurations. From a

mathematical point of view, supersymmetric D-brane configurations correspond to semi-

stable coherent sheaves on X with fixed Chern classes given by (2.15). In general the

geometry of moduli spaces of semi-stable coherent sheaves is very little understood on

Calabi-Yau threefolds. These spaces are expected to have very complicated singularities

which make a mathematical formulation of the counting problem very difficult.

The D6-D2-D0 configurations considered in this section can however be mapped to

D4-D2-D0 configurations by the duality chain of section two. We will show below that

this map is in fact a relative Fourier-Mukai transform along the elliptic fibers. Then the

counting problem becomes more tractable, and we can employ the methods of [5, 6, 19] in

order to determine the asymptotic growth of the microstates in the limit of large D2-brane

charge on the elliptic fiber.

The physical applications of the Fourier-Mukai transform have been focused so far

on heterotic bundle constructions and heterotic-F-theory duality starting with the work

of [46 – 50]. It has also been considered in [51, 52] in connection with homological mirror

symmetry, which is closer to our context. The Fourier-Mukai transform can be intuitively

thought of as T-duality along the elliptic fibers. However naive T-duality is not well defined

in the presence of singular elliptic fibers, hence we have to employ a more sophisticated

transformation which is defined abstractly as a derived functor. Since the technical details

have been thoroughly worked out in the above papers, we will only recall the essential

facts omitting most technical details. It is worth noting however that the Fourier-Mukai

transform is not an element of the T-duality group of the theory, which is generated by

monodromy transformations acting on the derived category [53, 54]. This question was

investigated in detail in [51, 52], where it was found that the Fourier-Mukai transform differs

from a monodromy transformation by a certain twist. This agrees with the transformation

found in section two, which involved nonperturbative duality transformations.

The Fourier-Mukai transform of the D6-D2-D0 configuration described by a bundle

E is a D4-D2-D0 system described by a derived object F [1], where F is a torsion sheaf

F on X supported on a divisor Σ ⊂ X. The effect of the shift by 1 is to change the

sign of all D-brane charges of the configuration represented by the sheaf F . Moreover,

according to [55], the Fourier-Mukai transform preserves semi-stability with respect to a

suitable polarization of X. This means it maps supersymmetric D-brane configurations to

supersymmetric D-brane configurations, therefore we can reliably use it in order to count

BPS states.

– 6 –
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The Chern character of F is [51]

ch1(F) = rσ + π∗C

ch2(F) = −r

2
σ ∧ π∗c1(B) +

(
m +

1

2

∫

X
σ ∧ π∗c1(B) ∧ π∗C

)
β

ch3(F) = −nω +
r

6
σ ∧ π∗c1(B)2.

(2.18)

where

C = qiη
i. (2.19)

Note that C can be interpreted by Poincaré duality as a curve class on B. We will assume

that C is a very ample divisor class on B of sufficiently high degree so that the generic

surface Σ in the class rσ + π∗C is smooth and irreducible.

One can easily check that the above of the Fourier-Mukai transform on topological

charges is in agreement with the duality map outlined in section (2.1) up to corrections

involving c1(B). This is positive evidence for the identification of these two transformations.

The curvature corrections are not under control in the chain of dualities described in section

two, hence we will not be able to perform a more detailed check. We will obtain more

compelling evidence by matching the black hole entropy formulas in the next section.

The leading contribution to the entropy of a D4-D2-D0 configuration in the limit of

large D0 charge has been evaluated in [5, 6, 19]. As a first step, we need to identify the

BPS charges (P̃A, Q̃A) of this configuration by computing the leading terms of the central

charge

Z(F [1]) = −Z(F) (2.20)

near the large radius limit point. More precisely, we have to express

Z(F) =

∫

X
eJch(F)

√
Td(X)

=

∫

X

[
1

2
J2ch1(F) + Jch2(F) +

1

2
ch1(F)Td2(X) + ch3(F)

] (2.21)

as a linear combination of the functions Z(αA), Z(βA) which appear in the expansion (2.9)

of the periods at the large radius limit point.

For this computation we will need the triple intersection numbers

Dhhh =
1

6

∫

X
α3

h =
1

6

∫

X
(σ + π∗c1(B))3 =

1

6

∫

B
c1(B)2

Dhhi =
1

6

∫

X
α2

h ∧ αi =
1

6

∫

X
σ ∧ σ ∧ αi =

1

6

∫

B
c1(B) ∧ γi

Dhij =
1

6

∫

X
αh ∧ αi ∧ αj =

1

6

∫

X
σ ∧ αi ∧ αj =

1

6

∫

B
γi ∧ γj

Dijk =
1

6

∫

X
αi ∧ αj ∧ αk = 0.

(2.22)

Let us introduce the following notation

d =

∫

B
c1(B)2 ci =

∫

B
c1(B) ∧ γi dij =

∫

B
γi ∧ γj . (2.23)

– 7 –
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Note that we have
∫

B
ηi ∧ ηj = dij

∫

B
c1(B) ∧ ηi = dijcj where dikd

kl = δl
i. (2.24)

We will also make frequent use of the following expressions

Q =

∫

B
C ∧ C = qid

ijqj c =

∫

B
C ∧ c1(B) = qid

ijcj . (2.25)

The Chern character ch(F) written in terms of the bases {αA} and {βA} reads

ch(F) = rαh + (qi − rci)d
ijαj +

(
m +

c

2

)
βh − r

2
ciβ

i −
(

n − rd

6

)
ω. (2.26)

Now we substitute equation (2.26) in (2.21) obtaining

Z(F) =

∫

X

[
1

2
J2(rαh + (qi − rci)d

ijαj)] +
(
m +

c

2

)
Jβh − r

2
ciJβi

− (n − rd

6
)ω +

1

2
(rαh + (qi − rci)d

ijαj)Td2(X)

] (2.27)

In terms of the functions Z(αi), Z(αh), Z(βi), Z(βh), (2.27) reads

Z(F) = rZ(αh) + (qi − rci)d
ijZ(αj) +

(
m +

c

2

)
Z(βh) − r

2
ciZ(βi) −

(
n − rd

6

)
. (2.28)

From this expression we can easily read off the charges of the D4-D2-D0 system described

by F . Taking into account the sign in equation (2.20), we can now read off the charge

vector of the corresponding BPS state
(
P̃ 0, P̃A, Q̃A, Q̃0

)
=

(
0, (qi − rci)d

ij , r,−rci/2,m + c/2, n − rd/6
)
. (2.29)

Note that the coefficients in the above expansion are not in general integral. In principle

one can choose a different basis of periods which makes the integrality of charges manifest.

Since this is not a very important point for the following computations, we postpone this

discussion for appendix A.

According to [5], the asymptotic microstate degeneracy of the D4-D2-D0 system in the

limit of large D0 charge is determined by the degeneracy of states in a (0, 4) CFT obtained

by lifting the system to M theory. The left moving central charge of the CFT is given by

cL = D +
1

6

∫

X
(rσ + π∗C) ∧ c2(X) (2.30)

where

D =
1

6

∫

X
(rσ + qiπ

∗ηi)3

=
1

6

(
dr3 − 3r2qicid

ij + 3rqiqjd
ij

)

=
1

6
(dr3 − 3r2c + 3rQ).

(2.31)
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The microstate degeneracy is determined by the asymptotic growth of states of momentum

m̂ = n +
1

12
(DααQ̃βQ̃β + 2DαiQ̃βQ̃i + DijQ̃iQ̃j) (2.32)

where [
Dαα Dαi

Diα Dij

]
=

[
Dαα Dαi

Diα Dij

]−1

.

and

Dαα = DαααP̃α + DααiP̃
i =

1

6
(rd + (qi − rci)d

ijcj) =
1

6
qicjd

ij

Dαi = DαiαP̃α + DαijP̃
j =

1

6
(rci + dij(qk − rck)d

kj) =
1

6
qi

Dij = DijαP̃α =
1

6
rdij

(2.33)

Applying Cardy’s formula, we find the leading term in the entropy formula to be

Smicro = 2π
√

Dm̂. (2.34)

Note that this formula captures the microstate degeneracy due to a gas of m̂ D0-brane

bound to a fixed D4-brane wrapping a divisor Σ in the class (rσ+π∗C) [19]. In particular,

this is not an exact formula for the entropy of the D4-D2-D0 configuration, and it does not

capture the asymptotic behavior at large r. In order to capture the later behavior one has

to integrate on the moduli space of the D4-brane, which is a very difficult computation.

We leave this issue for later work.

3. Six dimensional black strings and macroscopic entropy

The purpose of this section is to find the macroscopic description of the brane configurations

discussed in sections two and three in terms of low energy supergravity. We will first show

that the four or five dimensional attractor mechanism does not yield reliable solutions in the

limit required by Cardy’s formula. We will also show that a reliable low energy description

of the system must be formulated in terms of black string solutions of six dimensional

N = 1 supergravity. The black string entropy will be shown to agree with the leading

behavior of the microscopic result (2.34) in the limit of large charges.

3.1 D6-D2-D0 attractors

Let us first try to solve the attractor equations [56 – 58] for black holes carrying D6-D2-

D0 charges in a neighborhood of the large radius limit point in the Kähler moduli space.

According to [29, 42], this is equivalent to solving five dimensional attractor equations for

the dual M2-brane configurations.

Following [59, 58], we write the attractor equations in the form

iPΛ = Y Λ − Y
Λ

iQΛ = FΛ(Y ) −FΛ(Y )
(3.1)

– 9 –
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where the new variables Y Λ are defined by

Y Λ = ZXΛ.

Here Z denotes the central charge of a BPS states with charges (pΛ, qΛ) (2.5). The macro-

scopic entropy is given by

Smacro = iπ
(
Y

ΛFΛ(Y ) − Y ΛFΛ(Y )
)

. (3.2)

In our case the charge vector is given by (2.17), hence the equations (3.1) reduce to

iP 0 = Y 0 − Y
0

iQ0 = F0(Y ) −F0(Y )

0 = Y A − Y
A

iQA = FA(Y ) −FA(Y )
(3.3)

The solution of these equations is of the form [58, 60]

Smacro =
π

3P 0

√
4

3
(∆AyA)2 − 9((P 0)2Q0)

2

tA =
3

2

yA

∆AyA
(P 0Q0) − i

3

2

yA

∆AyA

Smacro

π

(3.4)

where yA are solutions to the quadratic equations

DABCyAyB = ∆C , ∆C = −P 0QC . (3.5)

An existence condition for the attractor point is that the solutions yA of (3.5) be real.

Moreover the attractor solution is self-consistent only if the imaginary parts Im(tA) of the

Kähler parameters in (3.4) are large and negative.

Next let us specialize equations (3.3) to D6-D2-D0 configurations on elliptic Calabi-

Yau threefolds. In this case, the charge vector is given in equation (2.17). We find that

the entropy formula is given by

Smacro =
π

3r

√
4

3
(∆hyh + ∆iyi)2 − 9r4m2 (3.6)

where

∆h = rn ∆i = rqi (3.7)

and yi, yh are solutions of the system of quadratic equations

Dhhh(yh)2 + 2Dhhiy
hxi + Dijhyiyj = rn

Dhhi(y
h)2 + 2Dijhyhyj = rqi.

(3.8)

Using formulas (2.22), (2.23), equations (3.8) become

1

6
d(yh)2 +

1

3
ciy

hyi +
1

6
dijy

iyj = rn

1

6
ci(y

h)2 +
1

3
dijy

hyj = rqi

(3.9)
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Using the linear equations in the yi, we find

yi = dij

(
3rqj

yh
− cjy

h

2

)
(3.10)

Substituting equations (3.10) in the first equation in (3.9) we obtain the quartic equation

d

24
(yh)2 +

r

2
qid

ijcj +
3r2

2
qid

ijqj(y
h)−2 = rn. (3.11)

Using the notations (2.25), we can rewrite equation (3.11) in the final form

d

24
(yh)4 − r

(
n − c

2

)
(yh)2 +

3r2Q

2
= 0. (3.12)

Solving for (yh)2, we find

(yh
±)2 =

12r

d

[(
n − c

2

)
±

√(
n − c

2

)2
− dQ

4

]
(3.13)

Using equations (3.10), the macroscopic entropy formula (3.6) can be expressed as a func-

tion of yh as follows

Smacro =
π

3

√
4

3

[(
n − c

2

)
yh
± +

3rQ

yh
±

]2

− 9r2m2 (3.14)

The values of the Kähler moduli at the attractor point are given by

th =
3rmyh

2∆
− i

3yhSmacro

2π∆

ti =
3rmyi

2∆
− i

3yiSmacro

2π∆

(3.15)

where

∆ =
(
n − c

2

)
yh
± +

3rQ

yh
±

(3.16)

Now let us review the regime of validity of the microscopic formula (3.14). We must satisfy

the following conditions

i) The curve class C = qiη
i should be sufficiently ample on B so that Σ = rσ +π∗C is a

very ample divisor on X. More precisely, a generic surface Σ is smooth and irreducible

if C is an effective curve class on B and also C − c1(B) is a smooth irreducible curve

on B [61]. If we choose the basis elements ηi, i = 1, . . . , h1,1(B), to be Poincaré dual

to generators of the Mori cone, the first condition implies that the integers qi must

be positive. The second condition implies that qi > rci for all i = 1, . . . , h1,1(B).

Note that Cardy’s formula for the entropy becomes more and more reliable as we

increase qi keeping r fixed because the divisor Σ becomes more and more ample.

Then one can neglect the effect of singular divisors in the linear system |Σ| on the

target space geometry of the (0, 4). As shown in [62], the (0, 4) sigma model for the
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M5-brane is quite involved, and the effects of singular divisors are not under analytic

control. We expect these effects to become important for values of qi comparable to

r. In particular, if qi < rci, the divisor Σ is not smooth, and the (0, 4) description

employed in [5] breaks down.

ii) Assuming condition (i) to be satisfied, validity of Cardy’s formula also requires the

momentum of the CFT states to be much larger than the central charge. This

condition is satisfied if the D0-brane charge n is much larger than D = Σ3. From the

point of view of the D4-D2-D0 configuration discussed in section three, this means

that the formula (2.34) captures the asymptotic behavior of the microstate degeneracy

in the limit of large n keeping r, qi fixed.

The two solutions found in (3.13) have the following leading order behavior in the limit

of large n, with r, qi fixed

(yh
+)2 ∼ 24rn

d
(yh

−)2 ∼ 3Q

2n
. (3.17)

One can rule out the first solution observing that for any choice of the sign for yh at least

one of the attractor Kähler parameters is large and positive.2 This is incompatible with

a physical interpretation of the solution, since it would require a large negative volume of

the Calabi-Yau threefold.

For the second solution, the leading term of the macroscopic entropy formula is

Smacro ∼ π
√

2rnQ − r2m2 (3.18)

and the leading behavior of the Kähler moduli at the attractor point is

Im(th) ∼ −
√

rQ

2n

Im(ti) ∼ −dij

[
qj

√
2n

rQ
− cj

2

√
rQ

2n

]
.

(3.19)

Clearly, for large n, Im(ti) are very large and negative while Im(th) is negative but very

small. Such points do not lie in the neighborhood of the large radius limit of the Kähler

moduli space, hence the attractor solution is not self-consistent. One may wonder if a self-

consistent attractor solution may exist in other regions of the moduli space. The quantum

special geometry of the Kähler moduli space has been solved for the elliptic fibration over

P
2 in [63]. Their results show that there is no region in the moduli space where the quantum

area of the elliptic fiber is much smaller than the quantum area of a horizontal curve. This

does not logically rule out the existence of attractor points in quantum phases of the moduli

space, but it suggests that this would not be a natural solution to our problem.

In the following we would like to propose another resolution of this problem suggested

by the duality chain of section two. Note that according to [64], IIA compactifications

2We thank F. Denef and G. Moore for discussions on this point.
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on elliptic fibrations are equivalent to six dimensional F-theory compactifications on the

base in the limit of small elliptic fibers. In this limit, a D6-D2-D0 configuration is mapped

to a D3-brane wrapping a holomorphic curve in the base, as discussed in section two.

The resulting noncritical string also wraps a transverse circle S1 whose radius is inversely

proportional with the size if the elliptic fiber. Therefore the scaling behavior of the Kähler

parameters at the attractor point suggests that the correct low energy description of our

system should be formulated in terms of black string solutions of N = 1 six dimensional

supergravity.

3.2 Black strings in N = 1 supergravity

Let us start with a brief review of F-theory compactifications to six dimensions from the

low energy point of view. Since we are interested only in compactifications on smooth

Weierstrass models X → B, we have to take B to be a smooth Fano surface, i.e. a del

Pezzo surface. Therefore B can be either a k-point blow-up of P
2, 0 ≤ k ≤ 8 or F0 = P

1×P
1.

For future reference we will choose a basis {γi} of H1,1(B) of the form

γ1 = e1 γ2 = e2 . . . γk = ek γk+1 = h for B = dPk

γ1 = a γ2 = b for B = F0

(3.20)

where h denotes the hyperplane class of P
2 and e1, . . . , ek denote the exceptional curve

classes. In the case B = F0, a, b denote the classes of the two rulings. The dual basis {ηi}
is

η1 = −e1 η2 = −e2 . . . ηk = −ek ηk+1 = h for B = dPk

η1 = b η2 = a for B = F0

(3.21)

The intersection matrix (dij) reads

(dij) = diag(−1,−1, . . . ,−1, 1) for B = dPk

(dij) =

(
0 1

1 0

)
for B = F0

(3.22)

Let us first consider the case B = dPk, 0 ≤ k ≤ 8, leaving B = F0 for a separate

discussion. The low energy supergravity theory contains a N = 1 graviton multiplet

and k = (h1,1(B) − 1) N = 1 tensor multiplets. The bosonic spectrum consists of the

metric tensor, (k + 1) elementary tensor multiplets and k real scalar fields. The tree level

formulation of the theory has been described in detail in [65]. The scalar components of the

tensor multiplets take values in the coset manifold O(k, 1)/O(k). They are parameterized

by an O(k, 1) valued field

V (x) =

[
xa

b xa
k+1

va vk+1

]

where a, b = 1, . . . , k subject to local O(k) gauge transformations

V (x) → g(x)V (x), g(x) ∈ O(k)
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and global SO(1, k) symmetry transformations

V (x) → V (x)U−1, U ∈ O(k, 1).

The (k + 1) elementary antisymmetric tensor fields B1, . . . , Bk+1 are obtained by Kaluza-

Klein reduction of the type IIB four-form potential C(4) on the basis {γi} of harmonic (1, 1)

forms

C(4) =
k+1∑

i=1

Bi ∧ γi. (3.23)

The tensor fields B = Bi transform in the fundamental representation of the global sym-

metry group O(k, 1),

Bi → U i
jB

j, U ∈ O(k, 1),

and are subject to certain self-duality constraints formulated in terms of the O(k, 1)-

invariant tensor fields

Ka = xa
bdBb + xa

k+1dBk+1 H = vadBa + vk+1dBk+1.

H is required to be self-dual and the Ka, a = 1, . . . , k are required to be anti-self-dual.

The expectation values of the scalar components va, a = 1, . . . , k and vk+1 are related to

the Kähler moduli of the F-theory base. This follows from the fact that the space H1,1
+ (B)

of self-dual (1, 1) harmonic forms is spanned by the Kähler class JB . The space of anti-self-

dual (1, 1) harmonic forms is the orthogonal complement of JB in H1,1(B). Let us write

the Kähler class of B as

JB = tiη
i

where ti are real valued Kähler moduli. Then we have

H =
1

2vol(B)
tidBi.

Note that the volume of the base is parameterized by the expectation value of a scalar com-

ponent of a six dimensional hypermultiplet, therefore the ti will be subject to a constraint

of the form

dijtitj = 2vol(B) = constant (3.24)

which is reminiscent of the more familiar cubic constraint in five dimensional supergravity.

By rescaling the fields we may take this constant to be 1. Then we can identify ti = vi,

i = 1, . . . , k + 1, and the constraint is part of the the orthogonality condition

ηV T η = V −1 (3.25)

where η is the Minkowski metric tensor of signature (k, 1).

For future reference, let us consider the case k = 1 in more detail. In this case, the

field V can be chosen of the form [65]

V =

[
cosh(φ) sinh(φ)

sinh(φ) cosh(φ)

]
(3.26)
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and the self-dual and anti-self-dual field strengths are given by

H = cosh(φ)B2 + sinh(φ)B1

K = cosh(φ)B1 + sinh(φ)B2.

This allows us to identify the Kähler parameters of the base B = F1 as

t1 = sinh(φ) t2 = cosh(φ). (3.27)

Note that in the case k = 1 we can give a conventional lagrangian formulation of the theory

in terms of either B1 + B2 or B1 − B2 regarded as an unconstrained tensor fields.

The above considerations are valid for B = dPk, 0 ≤ k ≤ 8. The case B = F0 also

results in a low energy effective action with one tensor multiplet, which has the same tree

level formulation as the case B = F1. The main difference between F0 and F1 resides in

the relation between the Kaluza-Klein zero modes of C(4) and the elementary tensor fields

B1, B2. In this case we have

C(4) =

[
B1 ∧ b − a√

2
+ B2 ∧ b + a√

2

]
. (3.28)

The theory can be alternatively formulated in terms of the Kaluza-Klein modes C1, C2

defined with respect to the natural basis {a, b} of (1, 1) forms on F0 given by the two

rulings,

C(4) = C1a + C2b. (3.29)

Note that

C1 =
B2 − B1

√
2

C2 =
B2 + B1

√
2

. (3.30)

Either C1 or C2 can be regarded as unconstrained tensor fields, leading to a conventional

lagrangian formulation of the theory. Moreover, the Kähler class has the form

JB = t1b + t2a

where

t1 =
1√
2
eφ t2 =

1√
2
e−φ. (3.31)

The black strings we are interested in are obtained by wrapping D3-branes on curves

of the form C = qiη
i in B, which are charged with respect to the elementary tensor fields

B1, B2. The charge lattice is

ΓB ' H2(B, Z)

equipped with the symmetric bilinear form defined in (3.22). Charge quantization breaks

the global O(k, 1) symmetry group to an integral subgroup Aut(ΓB) ⊂ O(k, 1). In addition,

these strings carry n units of KK momentum on circle S1 transverse to B and have angular

momentum J . The extra charges (n, J) are invariant under U-duality transformations.

In order to compute the macroscopic energy we have to find supersymmetric black

string solutions of N = 1 six dimensional supergravity with charges (q, n, J). These so-

lutions have been completely classified for for the minimal theory (i.e. k = 0) in [66] and
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for gauged supergravity with one tensor multiplet (i.e. k = 1) in [67]. One can also obtain

the results in the ungauged case either by adapting the results of [67] to the ungauged

case, or, as we will show below, by dualizing solutions of U(1)3 ungauged supergravity in

5 dimensions. Analogous results for higher numbers of tensor multiplets do not seem to

be available in the literature, but an exhaustive classification is not really needed for our

purposes.

A very useful observation is that U-duality transformations, which correspond to au-

tomorphisms of the charge lattice, map supergravity solutions to supergravity solutions

preserving the entropy. Therefore for any k ≥ 2 we can reduce the problem to k = 1 as

long as the charge vector

q = qiη
i (3.32)

can be mapped by a U-duality transformation to a charge vector contained in a (1, 1)

sublattice. For the type of lattices under consideration, this is not always the case [68],

but we will restrict ourselves only to such charge vectors from now on. A similar argument

was previously used in a similar context in [7]. Without loss of generality we can take the

(1, 1) sublattice to be spanned by (h, e1).

The case B = F0 can be easily solved observing that the resulting N = 1 theory

expressed for example in terms of the unconstrained field C2 is identical to a subsector

of the extended N = 4 supergravity obtained by reduction of the IIB theory on T 4. The

bosonic components of the subsector in question are the metric tensor, the six dimensional

reduction of the RR two-form potential C and the dilaton field φ. We will refer to this

truncation as the D1-D5 subsector since these are precisely the fields which couple with

six dimensional D1-D5 strings. The identification of these two models is justified by the

isomorphism

H1,1(F0)
'−→ H0(T 4) ⊕ H4(T 4)

(a, b) −→ (1, w) (3.33)

where w is a generator of H4(T 4) normalized so that
∫
T 4 w = 1. This isomorphism is

compatible with the bilinear intersection forms. Then one can check that the two low

energy effective actions are identical if we identify C2 with the RR two-form C and the field

eφ introduced in (3.26) with the dilaton field. Note that this is only a formal identification

of the tree level supergravity actions. It does not imply that the two physical theories are

equivalent, which is clearly not the case, but it is a useful technical tool in writing down

supergravity solutions. In particular note that although the low energy fields are formally

identified, they have very different interpretations in the two theories. For example eφ is

the dilaton field in the IIB theory on T 4, while it is related to the Kähler parameters of

the base in F-theory on F0. In the following we will think of the D1-D5 subsector of IIB

supergravity on T 4 just as an auxiliary model with no direct physical relevance.

The identification observed in the last paragraph is useful because now one can simply

reinterpret the six dimensional solution for a D1-D5 string on T 4 as a black string solution

in the F-theory compactification. In particular, the charges of the two solutions are related
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by

Q1 = q2 Q5 = q1. (3.34)

where q1, q2 are the black string charges with respect to the tensor fields C1, C2 defined

in (3.29)

Since the F1 theory is related at tree level to the F0 by a field redefinition given in

equations (3.28), that we can obtain similarly black string solutions for F-theory on F1. In

this case the charges should be related as follows

Q1 =
q2 + q1√

2
Q5 =

q2 − q1√
2

. (3.35)

Note that Q1, Q5 need not be integral since we are only using the six dimensional tree level

supergravity solution of the D1-D5 system as convenient technical tool. At this level, we

can simply regard Q1, Q5 as continuous parameters of the solution.

The case B = P
2 is somewhat special since it leads to minimal N = 1 supergravity

without tensor multiplets. In fact a black string solution in the P
2 theory can be regarded

as a similar solution in the F
1 theory with q1 = 0. Therefore it will be obtained from the

D1-D5 solution setting

Q1 = Q5 =
q√
2

(3.36)

where q = qh is the charge vector of the F-theory black string.

As explained in section two, in our case the black strings wrap a circle of radius R,

and are also transverse to a Taub-NUT space. In addition to the charges q they also carry

n units of KK momentum on this circle and have an angular momentum J . 3 The formal

identification of the corresponding supergravity solutions to the solution of a D1-D5 system

can be trivially extended to this case. We will need therefore to find solutions for a D1-D5

system in an identical six dimensional background geometry with the same KK momentum

n on the circle and the same angular momentum J .

This solution can in fact be obtained by dualizing a five-dimensional supergravity so-

lution corresponding to M-theory on T 6×TNr×R with Q1, Q5 and n M2 branes wrapping

three orthogonal two-cycles in T 6 (see for example [30, 69]). Such five-dimensional su-

pergravity solutions have been classified and studied in much detail in [70 – 72]4 and the

explicit T-duality transformation can be found for example in [30].

Let u denote an angular coordinate on S1 with periodicity u ∼ u + 2πR and let

(ψ, x1, x2, x3) denote coordinates on the Taub-NUT space of charge r. The angular coor-

dinate ψ has periodicity ψ ∼ 4πr, and (x1, x2, x3) are cartesian coordinates on the R
3 base

of Taub-NUT. The metric is

ds2
TNr

= V d~x2 + V −1(dψ + ~Ad~x)2 (3.37)

3When the transverse space is Taub-NUT, the quantity J is not strictly speaking an angular momentum.

However, if one replaces the transverse Taub-NUT by R
4 (or if one zooms in near the center of a Taub-

NUT space of charge one to recover a solution in R
4) this string becomes the six-dimensional lift of a

five-dimensional BMPV black hole with angular momenta J1 = J2 = J . When the transverse space is

Taub-NUT, the four-dimensional interpretation of the quantity J1 + J2 = 2J = m is that of D0 charge, or

KK momentum charge along the Taub-NUT circle.
4See [32, 31, 33, 73 – 75, 3, 4, 76 – 83] for related studies.
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where

V = h +
r

|~x|
and

∇× ~A = ∇V.

The constant h is a modulus that is inversely proportional to the radius of the circle fiber

at infinity. When h = 0 the metric (3.37) becomes that of R
4, and the radius in R

4 is

related to ~x via r2
R4 = 4|~x|.

The six dimensional metric and background fields depend on four harmonic func-

tions [30, 72]

Z1 = 1 + hc1 +
Q1

4|~x| Z5 = 1 + hc5 +
Q5

4|~x|

Zp = 1 + hcp +
n

4|~x| ZJ = hcJ +
J

4|~x|

(3.38)

on the Taub-NUT space, where Q1, Q5 are D1 and D5 charges respectively, n is the KK

momentum along the circle, J is the “5D angular momentum” that corresponds to KK

momentum along the Taub-NUT direction, and the parameters c1, c5, cp and cJ are moduli

of the solution. We work in a convention in which G6 = π
4 2πR, and in which the charges

that appear in the supergravity solution are the same as the quantized D-brane charges.

It is easy to see than when h is set to zero, these harmonic functions become the harmonic

functions that give the BMPV black hole with angular momenta J1 = J2 = J .

In order to write down the metric, let us construct a one-form

ω =
ZJ

2
(dψ + ~Ad~x) + ~ωd~x

on the Taub-NUT space, where ~ω depends only on ~x ∈ R
3 and is determined by

∇× ~ω =
1

2
(V ∇ZJ − ZJ∇V ) . (3.39)

The six dimensional metric is of the form

ds2
6 = H−1Zpdu2 − 2H−1du(dt + ω) + Hds2

TN (3.40)

where

H ≡ (Z1Z5)
1/2.

Note that ~ω is determined by condition (3.39) only up to a gradient on R
3, which can be

absorbed by a redefinition of the time coordinate t. Moreover, the field strength dω of ω

is anti-self-dual on the Taub-NUT space by construction. The dilaton eφ is

eφ =

(
Z1

Z5

)1/2

(3.41)

Solutions of the form (3.40), (3.41) can either be obtained by U-duality from a five-

dimensional M-theory on T 6 (or U(1)3) supergravity solution of the BMPV black hole in
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Taub-NUT, and also as u-independent non-twisting solutions in the formalism of [66, 67].

They describe a six dimensional black string solutions with a horizon of the form S1 × S3.

Its macroscopic entropy is

SIIB = 2π
√

rnQ1Q5 − r2J2 (3.42)

independent of the values of the moduli R,h, c1, c5, cp, cJ . When h = 0 and r = 1, the

Taub-NUT space becomes R
4, and this black string reduces to the six-dimensional lift of

the BMPV black hole.

One can also understand the macroscopic entropy (3.42) from a four-dimensional per-

spective, although as we explained in Subsection 4.1, the values of the moduli at the horizon

in the solution of interest make it intrinsically six-dimensional. If one U-dualizes this so-

lution to one where the three charges correspond to M2 branes wrapping the three T 2’s of

the T 6, and then further compactifies the Taub-NUT space along the fiber, one obtains a

four-dimensional black hole that has D2 charges Q1, Q2 and n, KK monopole (D6) charge

r and KK momentum (D0) charge m = 2J . The entropy of this black hole is again given

by (3.42) (see for example [9].)

Taking into account the charge identification (3.34), (3.36), it follows that in the cases

B = P
2, F0, F1, the macroscopic entropy of an F-theory black string is given by

Smacro = π
√

2rnQ − r2m2 (3.43)

where

Q = dijqiqj.

As explained in the paragraph containing equation (3.32), the case B = dPk, 2 ≤ k ≤ 8

can be reduced to the case B = F1 if the charge vector (3.32) can be mapped by an

automorphism of ΓB to a (1, 1) sub-lattice. Therefore formula (3.43) will hold in those

cases as well.

Finally, note that the Kähler moduli of the F-theory base are fixed by an attractor

mechanism. For the F0 model, using equations (3.31), (3.34), we find

t1 =
1√
2

q2

q1
t2 =

1√
2

q1

q2
(3.44)

at the attractor point. As expected, these values are independent of the moduli of the

solution. For the F1 model, equations (3.27) and (3.36) yield

t1 =
1

2

(
q2

q1
− q1

q2

)
t2 =

1

2

(
q2

q1
+

q1

q2

)
. (3.45)

Note that the solution is physically sensible only if t1, t2 are positive. For the F0 model,

this will hold if q1, q2 > 0 while for the F1 model we need q1, q2 > 0, and q2 > q1. These are

precisely the ampleness conditions for the divisor C = qiη
i on F0 and F1 respectively. For

more general models, the values of the Kähler parameters can be obtained by U-duality

transformations.
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It is also worth noting that the attractor mechanism also fixes the radius of the circle

parameterized by u to

n

√
2

rQ
.

If we take n much larger than Q, the circle is very large at the attractor point, hence the

geometry is six dimensional. This is consistent with the behavior of the Kähler parameters

of the four dimensional attractor solutions found in the previous subsection.

3.3 Comparison with microscopic entropy

Our next goal is to understand the relation between the microscopic entropy formula (2.34)

and the macroscopic formula (3.43). Summarizing conditions (i) and (ii) below (3.16),

recall that the microscopic entropy formula is reliable if

n >> qi >> 0, qi >> rci, (3.46)

assuming that ηi are generators of the Mori cone of B. In this limit we have

Q >> c

since

Q − c = (C · (C + KB))B = 2g(C) − 2

is the arithmetic genus of C, which is very large and positive for very large qi.

Let us examine the behavior of the microscopic entropy (2.34) in this limit. The leading

term in the expression of the triple intersection (2.31) is

D ∼ rQ

2
. (3.47)

This yields

Smicro ∼ π
√

2rQm̂ (3.48)

where m̂ is given by (2.32). The leading term of m̂ at large m is given by

m̂ ∼ n +
1

12
Dααm2. (3.49)

In order to compute Dαα, first note that

det

[
Dαα Dαi

Diα Dij

]
= det

(r

6
dij

) (
c

6
− Q

6r

)
∼ −Q

6r
det

(r

6
dij

)
.

Then we have

Dαα ∼ −6r

Q

and (3.49) becomes

m̂ ∼ n − r

2Q
m2.

Therefore the leading behavior of the microscopic energy (3.48) is

Smicro ∼ π
√

2rnQ − r2m2 (3.50)

which is identical to the leading behavior of the macroscopic formula (3.43).
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3.4 Subleading corrections

We conclude this section with a brief discussion of subleading corrections. So far we have

taken into account only the leading terms in the expression of the left moving central

charge (2.30) in the limit (3.46). There are two types of subleading corrections. One could

take into account subleading terms in the expression of the triple intersection (2.31) and

the correction terms of the form

1

6

∫

X
(rσ + π∗C) ∧ c2(X)

to the central charge. Here we will concentrate only on the first type of subleading terms,

which have the same scaling behavior as the leading term (3.47) with respect to the charges

qi, r. Corrections of the second type are linear in the charges, hence they have a lower

scaling behavior.

The microscopic formula becomes

Smicro ∼ π

√
2rn

(
Q − cr +

dr2

3

)
− r2m2. (3.51)

The question is if the subleading terms present in (3.51) can be understood from a super-

gravity analysis.

Let us first try to understand the origin of such corrections in F-theory. So far we have

been working with tree level N = 1 supergravity, which can be regarded as a truncation

of the N = 4 theory. However the low energy description of F-theory has extra couplings

which are not consistent with a truncation of the N = 4 theory. The couplings in ques-

tion are six-dimensional Green-Schwartz terms required by anomaly cancellation [84 – 89].

In this paper we consider only F-theory compactifications on smooth elliptic fibrations,

therefore we do not have six dimensional vector multiplets. The theory will have only

gravitational anomalies, which determine the higher curvature corrections to the tree level

supergravity action.

According to [84, 87 – 89] the higher curvature terms are encoded in a shift of the

elementary field strengths H i = dBi by a gravitational Chern-Simons term. More precisely,

one has to define

H i = dBi + aiω (3.52)

where ω is the gravitational Chern-Simons term for the six dimensional spin connection.

According to [88], the coefficients ai are given by ai = ci

2 , where the ci were defined in (2.23).

The effect of this shift on the supersymmetry variations and equations of motion has been

worked out in [84, 87, 89]. In principle one should solve the new equations of motion and

BPS conditions in order to understand the effect of higher curvature corrections on the

black string entropy. This would be quite an involved analysis which we will leave for

future work.

However, let us observe that if we ignore the back-reaction of the noncritical string on

the six dimensional space-time geometry, the shift (3.52) results in a shift of the form

qi → qi − rci

2
(3.53)
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on the charges. This follows by a direct evaluation of the Chern-Simons term in a Taub-

NUT background. Such a shift is reminiscent of a similar modification of black hole charges

in the four dimensional attractor mechanism [58]. In fact it can be easily checked that this

is indeed the shift predicted in [58] for the attractor solutions discussed in section 4.1. One

can think about the correction term in (3.52) as giving rise to a difference between the

charge measured at infinity, qi, and the actual charge of the black hole, qi− rci
2 . Accepting

this shift on a conjectural basis for the moment, note that it would result in a modified

macroscopic entropy formula of the form

Smacro = π

√
2rn

(
Q − cr +

dr2

4

)
− r2m2. (3.54)

Quite remarkably, this formula exhibits the same subleading correction as the microscopic

result (3.50), but the next order corrections, namely the terms proportional to nr3d, are

different. These terms are very small in the limit (3.46), but they would become important

in a regime in which qi and rci are of the same order of magnitude. This is precisely the

regime in which we also expect the effects of the singular divisors on the microscopic entropy

formula to be become important, as explained below (3.16). It would be very interesting to

confirm the macroscopic entropy formula (3.54) by a direct supergravity computation. If

the result conjectured here is indeed valid, it would also be very interesting to understand

the microscopic computation in the regime qi ∼ rci and compare the two expressions.

A. Charges and Fourier-Mukai transform

In this appendix we rewrite the D-brane charges obtained by Fourier-Mukai transform in

terms of a natural basis of periods from the point of view of homological mirror sym-

metry. This will make the integrality of charges manifest. Although not crucial for the

considerations of this paper, this is still an important consistency check for the formalism.

In order to obtain an expression with integral coefficients we have to expand Z(F) in

terms of a basis of periods consisting for central charges of D-branes on X. More precisely,

homological mirror symmetry implies that there should exist a collection of bundles (or

more generally derived objects) EΛ, FΛ on X, Λ = 1, . . . , h1,1(X) + 1, so that the central

charges Z(EΛ), Z(FΛ) form a symplectic basis of periods near the large radius limit point.

In particular we should have the following D-brane intersection matrix

∫

X
ch(EΛ) ∧ ch((FΛ′

)∨) ∧ Td(X) = εΛ′

Λ (A.1)

where F∨ denotes the (derived) dual of F and εΛ′

Λ is the canonical antisymmetric tensor,

with all the other entries in the intersection matrix vanishing. Note that it suffices to know

the K-theory classes of EΛ, FΛ. In order to construct such a basis in our class of examples,

let FA be a collection of torsion sheaves on X so that ch(FA) = βA, A = 1, . . . , h1,1(X).

Take

EA = OX(αA) −OX −O⊕nA
p ,
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A = 1, . . . , h1,1(X), in K-theory, where OX(D) denotes the line bundle on X with first

Chern class D, Op denotes the structure sheaf of a point p ∈ X, and

nA =

∫

X
αA ∧ Td2(X).

Moreover let E0 = OX , F 0 = Op. Then, using the intersection numbers (2.22), it is

straightforward to check that the intersection relations (A.1) hold if and only if

∫

B
(γj ∧ γj − γj ∧ c1(B)) = 0 (A.2)

for all j = 1, . . . , h1,1(B). We will assume this relation to be satisfied from now on. Then

a direct computation using the intersection relations (A.2) and

α2
h = (σ + π∗c1(B))2 = ciβ

i + dβh, α2
i = (γj)

2
Bβh (A.3)

yields
Z(F) =r(Z(Eh)) + (qi − rci)d

ij(Z(Ej)) + mZ(F h) − rciZ(F i)

−
(
n + nh + (qi − rci)d

ijnj

)
Z(F 0).

(A.4)

Now recall that the basis B of a smooth elliptic fibration with a section must be a del

Pezzo surface, which has a unimodular middle cohomology lattice. Then it follows that

all coefficients in this expansion are integral, as expected. Moreover, all terms in this

expressions are covariant with respect to any linear change of basis {γj} which preserves

the intersection relations (A.2). This expected, since such transformations are mapped to

symplectic changes of basis by mirror symmetry.
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